Fuzzy adaptive genetic algorithms: design, taxonomy, and future directions
نویسندگان
چکیده
The genetic algorithm behaviour is determined by the exploitation and exploration relationship kept throughout the run. Adaptive genetic algorithms, that dynamically adjust selected control parameters or genetic operators during the evolution have been built. Their objective is to offer the most appropriate exploration and exploitation behaviour to avoid the premature convergence problem and improve the final results. One of the adaptive approaches are the adaptive parameter setting techniques based on the use of fuzzy logic controllers, the fuzzy adaptive genetic algorithms (FAGAs). In this paper, we analyse the FAGAs in depth. First, we describe the steps for their design and present an instance, which is studied from an empirical point of view. Then, we propose a taxonomy for FAGAs, attending on the combination of two aspects: the level where the adaptation takes place and the way the Rule-Bases are obtained. Furthermore, FAGAs belonging to different groups of the taxonomy are reviewed. Finally, we identify some open issues, and summarise a few new promising research directions on the topic. From the results provided by the approaches presented in the literature and the experimental results achieved in this paper, an important conclusion is obtained: the use of fuzzy logic controllers to adapt genetic algorithm parameters may really improve the genetic algorithm performance.
منابع مشابه
ADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITH UNKNOWN DISTRIBUTED TIME-VARYING DELAYS AND UNKNOWN CONTROL DIRECTIONS
In this paper, an adaptive fuzzy control scheme is proposed for a class of perturbed strict-feedback nonlinear systems with unknown discrete and distributed time-varying delays, and the proposed design method does not require a priori knowledge of the signs of the control gains.Based on the backstepping technique, the adaptive fuzzy controller is constructed. The main contributions of the paper...
متن کاملFuzzy adaptive tracking control for a class of nonlinearly parameterized systems with unknown control directions
This paper addresses the problem of adaptive fuzzy tracking control for aclass of nonlinearly parameterized systems with unknown control directions.In this paper, the nonlinearly parameterized functions are lumped into the unknown continuous functionswhich can be approximated by using the fuzzy logic systems (FLS) in Mamdani type. Then, the Nussbaum-type function is used to de...
متن کاملGenetic fuzzy systems: taxonomy, current research trends and prospects
The use of genetic algorithms for designing fuzzy systems provides them with the learning and adaptation capabilities and is called genetic fuzzy systems (GFSs). This topic has attracted considerable attention in the Computation Intelligence community in the last few years. This paper gives an overview of the field of GFSs, being organized in the following four parts: (a) a taxonomy proposal fo...
متن کاملA Survey on Computational Intelligence Techniques used in LNA Design
Manual design of integrated circuits has lately become obsolete, given the fact that time constraints are more and more present. Hence, designers have shifted towards automatic approaches, using various software tools, which not only ensure a speedy result, but also provide a fertile environment for further designs. Many automated design processes that address integrated circuits include one or...
متن کاملForecasting Industrial Production in Iran: A Comparative Study of Artificial Neural Networks and Adaptive Nero-Fuzzy Inference System
Forecasting industrial production is essential for efficient planning by managers. Although there are many statistical and mathematical methods for prediction, the use of intelligent algorithms with desirable features has made significant progress in recent years. The current study compared the accuracy of the Artificial Neural Networks (ANN) and Adaptive Nero-Fuzzy Inference System (ANFIS) app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Soft Comput.
دوره 7 شماره
صفحات -
تاریخ انتشار 2003